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Systematic studies of the cancer genome have exploded in recent years. These studies have re-
vealed scores of new cancer genes, includingmany in processes not previously known to be causal
targets in cancer. The genes affect cell signaling, chromatin, and epigenomic regulation; RNA
splicing; protein homeostasis; metabolism; and lineage maturation. Still, cancer genomics is in
its infancy. Much work remains to complete the mutational catalog in primary tumors and across
the natural history of cancer, to connect recurrent genomic alterations to altered pathways and
acquired cellular vulnerabilities, and to use this information to guide the development and applica-
tion of therapies.
Introduction
More than a century ago, Theodor Boveri proposed that cancer

is caused by chromosomal derangements that cause cells to

divide uncontrollably (Boveri, 2008)—that, in modern terms,

cancer is a ‘‘disease of the genome.’’ It took 70 years for molec-

ular biologists to prove this concept by showing the existence of

mutated cancer-causing genes (Stehelin et al., 1976; Tabin et al.,

1982). By the mid-1980s, researchers had established two main

types of cancer-causing genes (oncogenes and tumor

suppressor genes) and had defined the genomic alterations

that give rise to them (e.g., nucleotide substitutions, chromo-

somal copy number alterations, and DNA rearrangements; re-

viewed in Macconaill and Garraway [2010]). These studies also

began to suggest considerable complexity in the mutational

origins of cancer, with cancer-causing genes varying across

and within tumor types and with multiple genes contributing to

tumorigenesis.

In an influential commentary in 1986, Renato Dulbecco argued

that the complete sequence of the human genome would be an

essential tool for systematically discovering the genes that drive

cancer (Dulbecco, 1986). ‘‘If we wish to learnmore about cancer,

we must now concentrate on the cellular genome,’’ he wrote.

‘‘We have two options: either to try to discover the genes impor-

tant in malignancy by a piecemeal approach, or to sequence the

whole genome.it will be far more useful to begin by sequencing

the cellular genome.’’ Responding to this and other calls, the

Human Genome Project (HGP) was launched in 1990. A ‘‘draft’’

sequence was completed by 2000 (Lander et al., 2001; Venter

et al., 2001) and a near-complete sequence by 2003 (IHGSC,

2004).

With the availability of the genome sequence, cancer

researchers rapidly began to develop a new field of ‘‘cancer

genomics.’’ Cancer genomics involves systematic studies of
(some or all of) the genome to find sites of recurrent derange-

ment in specific cancer types. Pioneering genomic studies at

the Sanger Institute and Johns Hopkins uncovered genes

mutated frequently in melanoma and colon cancer, respectively

(Davies et al., 2002; Samuels et al., 2004). Studies by several

groups in Boston and New York then discovered frequent

activating mutations in lung cancer, which largely explained

patient response to a drug (Lynch et al., 2004; Paez et al.,

2004; Pao et al., 2004). Soon thereafter, a working group of the

U.S. National Cancer Institute proposed a ‘‘Human Cancer

Genome Project’’ (see http://www.genome.gov/Pages/About/

NACHGR/May2005NACHGRAgenda/ReportoftheWorkingGroup

onBiomedicalTechnology.pdf), which came to be called The

Cancer Genome Atlas (TCGA). The NCI launched a pilot project

for TCGA in 2006 and a full project in 2009. In parallel, an Inter-

national Cancer Genome Consortium was launched and has

grown to involve researchers in more than 15 countries (Hudson

et al., 2010).

The notion of taking a genomic approach to characterizing

cancer was not universally endorsed, as reflected in the title of

one commentary: ‘‘Human Cancer Genome Project: Another

Misstep in the War on Cancer’’ (Gabor Miklos, 2005). Some

thoughtful critics felt that hypothesis-driven research was the

best way to study cancer and worried that systematic studies

were so expensive that they would drive out focused investiga-

tion (Weinberg, 2010). Proponents argued that science requires

investment in both hypothesis generation and hypothesis testing

and that unbiased genomic studies were an excellent way to find

surprises. They also expected the cost of genomic studies to

plummet, with new technologies just over the horizon. Some

scientists were skeptical because they believed that there

were few cancer-related genes left to discover, whereas others

thought that cancers were too hopelessly complicated to yield
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Table 1. Current Large-Scale Cancer Genome Projectsa

Anatomic Site Tumor Type

Brain/Central nervous

system

glioblastoma multiforme

low-grade glioma

pediatric: medulloblastoma

pediatric: pilocytic astrocytoma

Head and neck head/neck squamous cell cancer

thyroid carcinoma

Thoracic lung adenocarcinoma

lung squamous cell carcinoma

Breast breast lobular carcinoma

breast ductal carcinoma

breast triple-negative

breast HER-2 positive

breast ER positive vs. negative

Gastrointestinal esophageal adenocarcinoma

esophageal squamous carcinoma

gastric adenocarcinoma

gastric (intestinal/diffuse)

hepatocellular (alcohol/adiposity)

hepatocellular (virus)

hepatocellular (general)

pancreatic adenocarcinoma

colorectal adenocarcinoma

colon cancer (non-Western)

Gynecologic ovarian serous cystadenocarcinoma

endometrial carcinoma

cervical cancer (squamous + adeno)

Urologic renal: clear cell carcinoma

renal: papillary carcinoma

renal: chromophobe carcinoma

bladder cancer

prostate adenocarcinoma

prostate adenocarcinoma, early onset

Skin melanoma, cutaneous

Soft tissue (Sarcoma) solitary fibrous tumors

desmoid tumors

angiorsarcomas

leiomyosarcomas

extraskeletal myxoid chondrosarcomas

Hematologic acute myeloid leukemia

lymphoma: chronic lymphocytic leuk.

lymphoma: germinal B cell

lymphoma: diffuse large B cell

chronic myeloid disorders
aIn conjunction with The Cancer Genome Atlas, International Cancer

Genome Consortium, and Slim Initiative for Genomic Medicine.
to systematic analysis. This open debate helped to shape the

design of cancer genome projects. In the end, however, the

questions could only be answered with data.

With cancer genome projects now underway for several years

(Table 1), the time is right to assess the early returns and to

consider next steps for the field. (As a complement to this

Review, we recommend an earlier review by Stratton et al.

[2009], which describes many foundational aspects of cancer

genomics.) Here, we describe the remarkable tapestry of biolog-

ical, evolutionary, and therapeutic insights that have emerged

from systematic cancer genome characterization. At the end,

we suggest the next steps for cancer genomics.

Technology Revolution
Initial cancer genome projects had to be carried out with what

today seem like primitive technologies. Mutationswere identified

by traditional capillary-based sequencing in which each exon to

be studied was amplified and sequenced individually, and chro-

mosome copy number alterations were surveyed with DNA mi-

croarrays. DNA rearrangements could hardly be cataloged at

all. The high cost and extensive infrastructure needed for

large-scale DNA sequencing placed tight constraints on the

amount of data that could be collected. Exome-scale projects

could only be carried out on small numbers of samples (Sjöblom

et al., 2006; Wood et al., 2007); thus, much effort was spent

developing lists of candidate gene for sequencing based on a pri-

ori notions of cancer mechanisms or therapeutic targets (Ding

et al., 2008; Greenman et al., 2007; CGARN, 2008).

The emergence of massively parallel sequencing (MPS) revo-

lutionized the entire enterprise (Bentley et al., 2008; Margulies

et al., 2005). Initially, MPS made it possible to sequence nearly

1 billion bases (1 gigabase [Gb]) in a single run; this number

grew to >600 Gb/run by 2012. In parallel, methods were devel-

oped that employ hybridization to oligonucleotide ‘‘baits’’ in

aqueous solution to capture specific portions of the genome—

most importantly, the�2%of genomic DNA that contains known

exons (the ‘‘exome’’) (Gnirke et al., 2009; Hodges et al., 2007).

MPS also made it possible to use a single technology platform

for all categories of genome analysis (discovering point muta-

tions, assessing copy number alterations and translocations,

measuring transcript levels, identifying alternative splicing, de-

tecting DNA methylation, and mapping chromatin structure).

The first whole cancer genome sequenced by MPS was re-

ported in 2008 (Ley et al., 2008). Whereas initial studies were

confined to single samples (Pleasance et al., 2010a, 2010b),

studies of hundreds of samples have quickly become the

norm. Plummeting costs have propelled an unprecedented

explosion of sequence data. For example, >16,000 cancer

samples had been subjected to genome or exome sequencing

by late 2012 just at our institution alone (Broad Institute).

With the MPS data came a need for completely new analytic

tools. The first challenge was to accurately determine the

sequence in individual tumor and normal samples from the

‘‘raw’’ sequence data. Each type of alteration in the DNA and

RNA required a specialized detection method, including for

single nucleotide variants, small insertions/deletions, chromo-

somal rearrangements, gene fusions, alternatively spliced tran-

scripts, chromosomal copy number alterations, and detection
18 Cell 153, March 28, 2013 ª2013 Elsevier Inc.
of foreign DNA (such as from viruses) (Beroukhim et al., 2007;

Chen et al., 2009; Cibulskis et al., 2013; Dees et al., 2012; Kim

and Salzberg, 2011; Kostic et al., 2011; Trapnell et al., 2009).

Algorithms employ probabilistic methods to identify mutations



or rearrangements based on their presence in multiple tumor

sequence reads and absence in the paired normal DNA

sequence (Meyerson et al., 2010).

Detecting mutations with high accuracy turned out to be

surprisingly tricky. Because somatic point mutations in cancer

are so infrequent (�1/Mb), the background error rate must be

an order of magnitude lower to ensure that most apparent events

are true positives. Many false positives initially arose from

sequencing errors and inaccurate alignment of reads to the

human genome. In addition, false negatives may arise from

admixture of noncancer cells (tumor purity), copy number varia-

tions inherent in cancer genomes (ploidy), and the presence of

variant subclones within the cancer cell population (heteroge-

neity) (Carter et al., 2012). Increasing the sequencing depth

(average number of reads per base) was found to improve

both the specificity and sensitivity of mutation calling. Currently,

tumor sequencing is performed with 100- to 150-fold coverage

for whole-exome analysis and 30- to 60-fold coverage for

whole-genome analysis. (The whole-genome sequence should

ideally be deeper but is currently limited by cost.)

Obtaining accurate mutation calls for a collection of individual

samples is only the first step. The harder challenge is to distin-

guish between ‘‘driver’’ events that are causally related to the

development of cancer and random ‘‘passenger’’ events that

have simply accumulated over the course of development and

cell growth. This requires determining which genes show signif-

icantly more mutations than random expectation. Sophisticated

mathematical methods are needed to ensure that the ‘‘random

expectation’’ properly accounts for (1) variation in background

mutation rates across the genome, (2) variation across tumors,

and (3) variation in purity and heterogeneity (Chapman et al.,

2011a; Dees et al., 2012; Hodis et al., 2012; M.S. Lawrence,

personal communication). Without such corrections, genes

may be spuriously declared to be drivers, with the problem

growing worse as sample size grows (because even modest

deviations from expectation will appear to be significant). Recent

studies have highlighted some likely spurious results and

have developed solutions to eliminate them (G. Getz, personal

communication). Perfecting these algorithms remains an area

of active research. Other algorithms have been developed to

study the structure of amplifications and deletions to detect

the possibility of multiple target genes within a given locus (Ber-

oukhim et al., 2007; Beroukhim et al., 2010).

Mutational Mechanisms
The explosion of genomic data quickly shed light on the muta-

tional processes of cancer, revealing an unexpected richness

of mechanisms. These insights may propel a deeper under-

standing of factors governing genome integrity and tumor evolu-

tion.

Mutation Rates

Initial plans for cancer genome analysis assumed a single

uniform background mutation rate (�1/Mb). In fact, cancer

mutation rates turned out to be much more variable, ranging

from as low as one base substitution per exome (<0.1/Mb) in

some pediatric cancers to thousands of mutations per exome

(�100/Mb) in certain mutagen-induced malignancies (such as

lung cancer and melanoma). Moreover, mutation rates were
found to vary substantially across the genome, governed by

processes such as transcription-coupled repair and replication

timing.

Mutational Spectra

Cancer genome sequencing has also revealed a wide array of

mutational patterns both across and within individual tumor

types. Their distinctive characteristics may reflect extrinsic

factors (e.g., UV light or tobacco smoke) or intrinsic patterns

such as DNA repair deficiencies. For example, a recent study

(Nik-Zainal et al., 2012a) pointed to at least five distinct nucleo-

tide substitution patterns, most of which occur by as-yet

unknown mechanisms. One such process, which produces

C > A, C > G, or C > T substitutions at TpCpX trinucleotides, ap-

peared to underpin most nucleotide substitutions in �10% of

ER-positive breast tumors. These studies also discovered

a new regional hypermutation mechanism characterized by

multiple base mutations that occur in cis near rearrangement

breakpoints. Termed ‘‘kataegis’’ (Greek, ‘‘kataegis’’ = ‘‘shower’’

or ‘‘thunderstom’’), this process likely involves the activation-

induced deaminase (AID) and apolipoprotein B mRNA-editing

enzyme catalytic polypeptide-like (APOBEC) protein families.

New mutation patterns (in this case, A > C transversions at

‘‘AA’’ dinucleotides) have also been discovered in esophageal

cancers by large-scale sequencing (A.M. Dulak, personal

communication).

Chromosomal Gains and Losses

Although tumor cell aneuploidy has long been recognized, global

cancer genome studies have yielded a systematic assessment

of large-scale (whole chromosome or chromosome arm) and

focal copy number aberrations. The typical cancer cell exhibits

large-scale gains or losses involving a quarter of its genome

and carries focal events affecting 10% (Beroukhim et al.,

2010). Based on current sample collections, many focal amplifi-

cations and deletions have been localized to ‘‘peak’’ regions

containing a median of 6–7 genes (although the number is

150–200 in some cases). For the majority of focal events, the

driver gene(s) still cannot be assigned definitively.

Chromosomal Shattering

One of the most striking mutational patterns unveiled by

whole-genome sequencing studies consists of a catastrophic

phenomenon that produces dozens or even hundreds of rear-

rangements. The resulting disarray is distinctive for two reasons:

it is typically localized within one or a few chromosomes, and it

usually involves only two distinct copy number states (Stephens

et al., 2011). Termed ‘‘chromothripsis’’ (Greek, ‘‘thripsis’’ =

‘‘shattering’’), this process occurs in �2%–3% of human

cancers, with an elevated prevalence in bone cancers, pediatric

medulloblastoma, and neuroblastoma (Molenaar et al., 2012;

Rausch et al., 2012). Genomic shattering appears to develop

as a result of erroneous chromosome segregation during mitosis

and the subsequent entrapment of individual chromosomes

within ‘‘micronuclei’’ (Crasta et al., 2012). Micronuclei have a

tendency toward premature chromosome condensation, which

may result in pulverization of chromosomal segments. Chromo-

somes that survive this process, having undergone aberrant re-

assembly through nonhomologous end-joining, emerge with

dense rearrangements that may sometimes dysregulate cancer

genes (Stephens et al., 2011).
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Chromosomal Chains

A whole-genome sequencing study of primary human prostate

cancer (Berger et al., 2011) uncovered a distinct category of

complex chromosomal rearrangements. Prostate cancer

genomes often exhibit ‘‘chains’’ of copy-neutral rearrangements

that consist of �4–12 distinct breakpoint junctions distributed

across multiple chromosomes, with the breakpoints forming

a ‘‘closed chain’’ (A to B, B to C, C to D, and finally back to A)

that distinguishes the process from chromothripsis or other

complex rearrangements. Closed chain rearrangement break-

points tend to occur near ‘‘open’’ chromatin (that is, transcrip-

tionally active chromatin) in prostate cancer genomes harboring

ETS transcription factor rearrangements but near ‘‘closed’’ chro-

matin in certain ‘‘ETS-negative’’ prostate cancers. These chains

have recently been termed ‘‘chromoplexy’’ (Greek, ‘‘plexy’’ =

‘‘weave’’ or ‘‘braid’’) (Baca et al., 2013).

Additional Processes

Other complex DNA rearrangements seem to arise through

errors in DNA replication (Liu et al., 2011). These may include

fork-stalling and template-switching events that trigger micro-

homology-dependent DNA priming, duplications, and DNA

template insertions (for a recent review, see Holland and Cleve-

land [2012]). Interestingly, these replication-dependent rear-

rangements show a strong correlation with TP53 mutations in

subtypes of medulloblastoma (Rausch et al., 2012). Thus,

somatic alterations in DNA-damage-sensing pathways may

render tumor progenitor cells vulnerable to ensuing catastrophic

genomic events.

Insights into mutational patterns may bring a deeper under-

standing of tumor evolution. In contrast to a simple gradualist

notion in which somatic mutations accumulate steadily, tumor

evolution can be punctuated by various types of catastrophic

events (Baca et al., 2013). A fuller knowledge of mutational

processes—particularly those that preferentially enact cancer

genes—may help to identify driver mechanisms in tumors.

New Cancer Genes
A key question is whether cancer genomics has led to the

discovery of new genes and, ideally, to new classes of genes

not previously known to play a causal role in cancer. Although

much work still lies ahead, the answer is clear. The trickle of bio-

logical discoveries from early studies has become a wave, impli-

cating a wide range of cellular processes in cancer. Whereas

some of the new cancer genes encode classical signaling

proteins, most populate new and sometimes surprising cate-

gories, such as metabolism, epigenetics, chromatin biology,

splicing, protein homeostasis, and cell differentiation (Table 2).

The insights from these studies are already guiding hypoth-

esis-driven cancer research ranging from basic cell and molec-

ular biology to novel therapeutics.

Signal Transduction Pathways

Studies from the 1980s and 1990s revealed that signaling path-

ways linked to proliferation and survival played a crucial role in

many cancers. Mutations were discovered in key genes that

encode members (or regulators) of receptor tyrosine kinase

(RTK)-signaling pathways (HER-2, c-KIT, ABL, RAS, NF1, NF2,

MET, PTEN), the WNT/b-catenin pathway (APC), and the TGF

b pathway (SMAD2 and SMAD4), among others. Moreover, the
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pharmaceutical industry showed that drugs could be developed

to inhibit protein kinases. The poster child was imatinib (Gleevec)

against the ABL and KIT kinases, which proved remarkably

effective in treating malignancies driven by activating mutations

in these oncoproteins (chronic myelogenous leukemia [CML]

and gastrointestinal stromal tumors [GIST]) (Demetri et al.,

2002; Druker et al., 2001).

Recognition of the importance and druggability of RTKs moti-

vated the first unbiased sequencing surveys in the early 2000s,

which employed Sanger sequencing to examine dozens of

genes in dozens of patients. The studies quickly hit pay dirt,

with the finding of mutations in BRAF in 50% of melanomas,

PIK3CA in �25%–30% of breast and colorectal cancers,

EFGR in 10%–15% of non-small cell lung cancers, FGFR2 in

15%–20% of endometrial cancers, and JAK2 in myeloprolifera-

tive diseases (Davies et al., 2002; Dutt et al., 2008; Kralovics

et al., 2005; Levine et al., 2005; Lynch et al., 2004; Paez et al.,

2004; Pao et al., 2004; Pollock et al., 2007; Samuels et al.,

2004). (Some of the findings came to have a major impact on

drug development and clinical treatment, including the develop-

ment of selective RAF and MEK inhibitors that have produced

dramatic remissions in melanoma and the ability to target the

use of EGFR inhibitors to the subset of lung cancer patients

who derive benefit.)

In turn, these successes led researchers to scale up

sequencing surveys to discover additional candidate genes in

signaling pathways and eventually to all genes. Recurrent muta-

tions were found in genes involved in several—sometimes

surprising—pathways not previously suspected to drive cancer.

These included the MAP3K1 and MAP2K4 genes in breast

cancer (encoding serine/threonine kinases involved in the P38-

JNK signaling pathway) (Banerji et al., 2012; Ellis et al., 2012;

Stephens et al., 2012; CGAN, 2012), RAC1 in melanoma

(a GTPase involved in the RAC/PAK-signaling module involved

in focal adhesion) (Hodis et al., 2012; Krauthammer et al.,

2012), ELMO1 and DOCK2 in esophageal cancer (two genes

that activate RAC/PAK signaling) (A.M. Dulak, personal commu-

nication),MYD88 in diffuse large B cell lymphoma (activates NF-

kB signaling) (Ngo et al., 2011), and PREX2 in melanoma (a

guanine nucleotide exchange factor that controls RAC/PAK

and PI3K signaling) (Berger et al., 2012). Remarkably, a pathway

involved in axon guidance in neurons (the ROBO/SLIT pathway)

turned out to be a target of mutations in �20% of pancreatic

adenocarcinomas (Biankin et al., 2012). And, a pathway that

governs the oxidative stress response in all cells (the KEAP1/

NRF2-signaling pathway) is activated by mutation in >30% of

squamous lung cancers (Hammerman et al., 2012; Shibata

et al., 2008). Many of these results would have eluded hypoth-

esis-based investigation.

In addition, genome-wide studies of copy number alterations

based on DNA microarrays revealed recurrently amplified genes

in signaling and cell survival pathways. MCL1 and BCL2L1,

which encode anti-apoptotic proteins that are critical regulators

of tumor cell survival, were found to be amplified in a wide range

of cancers, including breast, lung, colorectal, melanoma, and

glioblastoma (Beroukhim et al., 2010). FGFR1 was found to be

amplified in >20% of lung squamous cancer (Weiss et al.,

2010) and in �10% of breast cancers (Chin et al., 2006).



Table 2. Discoveries from Cancer Genome Characterization

Cellular Process Altered by Genomic Alterations Examples of Cancer Genes Discovered (or Extended to New Cancers*) by Genomics

RTK signaling EGFR,a ERBB2,*,a MET,*,a ALK,*,a JAK2,a RET,*,a ROS,*,a FGFR1,*,a FGFR2,a

PDGFRA,*,a and CRKLa

MAPK signaling (oncogenes) KRAS,*,a NRAS,*,a BRAF, a and MAP2K1a

MAPK signaling (TSG) NF1*,b

PI3K signaling (oncogenes) PIK3CA,a AKT1,a and AKT3a

PI3K signaling (TSG) PTEN*,b and PIK3R1b

Notch signaling (oncogene or TSG) NOTCH1,c NOTCH2,c and NOTCH3b

TOR signaling (TSG) STK11,*,b TSC1,*,b and TSC2*,b

Wnt/b-catenin signaling (TSG) APC*,b and CTNNB1*,a

TGF-b signaling (TSG) SMAD2,*,b SMAD4,*,b and TGFBR2b

NF-kB signaling (oncogene) MYD88a

Other signaling RAC1,a RAC2,a CDC42,a KEAP1,b MAP3K1,b MAP2K4,b ROBO1,b ROBO2,b SLIT2,b

SEMA3A,b SEMA3E,b ELMO1,d and DOCK2d

Epigenetics DNA methylation DNMT3Ab

Epigenetics DNA hydroxymethylation TET2b

Chromatin histone methyltransferases MLL,*,b MLL2,b MLL3,b EZH2,c NSD1,b and NSD3b

Chromatin histone demethylases JARID1A,b UTX,b KDM5A,b and KDM5Cb

Chromatin histone acetyltransferases CREBP b and EP300b

Chromatin SWI/SNF complex SMARCA1,*,b SMARCA4,b ARID1A,b ARID2,b ARID1B,b and PBRM1b

Chromatin other CHD1,b CHD2,b and CHD4b

Transcription factor lineage dependency or oncogene MITF,a NKX2-1,a SOX-2,a ERG,a ETV1,a and CDX2a

Transcription factor other MYC,*,a RUNX1,b GATA3,b FOXA1,b NKX3.1,b SOX9,a NFE2L2,a and MED12d

Splicing SF3B1,d U2AF1,d SFRS1,d SFRS7,d SF3A1,d ZRSR2,b SRSF2,d U2AF2,d

and PRPF40Bd

RNA abundance DIS3d

Translation/protein homeostasis/ubiquitination SPOP,d FBXW7,*,b WWP1,*,b FAM46C,d and XBP1d

Metabolism IDH1a and IDH2 a

Genome integrity TP53,*,b MDM2,a MSH,*,b MLH,*,b and ATM*,b

Telomere stability TERT promoter mutationsa

Cell cycle (oncogene) CCND1*,a and CCNE1*,a

Cell cycle (TSG) CDKN2A,*,b CDKN2B,*,b and CDKN1Bb

Apoptosis regulation MCL1,a BCL2A1,a and BCL2L1a

aActivating mutation or amplification.
bInactivating mutation or deletion.
cBoth activating and inactivating genomic events observed.
dEffect of mutations on protein function unknown.
CRKL, which encodes a signaling adaptor protein, was found

amplified in a subset of lung cancers (Kim et al., 2010).

Despite their successes, these studies were sobering in

revealing that the early promise of using a single kinase inhibitor

(imatinib) to treat prevalent oncoprotein mutations (as in CML

and GIST) was not going to be widely generalizable: most

cancers lacked a highly recurrent mutation in genes encoding

kinases (or other readily druggable targets) (Greenman et al.,

2007). This underscored the importance of more deeply probing

the cancer genome.

Metabolism

If there were any doubt that genomic approaches would reveal

surprises, they should have been put to rest by a pioneering

study in 2008. In this paper (which predated the maturation of
MPS technology), Vogelstein and colleagues employed an

impressive ‘‘brute force’’ approach to PCR amplify and

sequence 175,471 exons from 20,661 genes (Parsons et al.,

2008). They were rewarded with the discovery of highly recurrent

mutations in the IDH1 gene, which encodes the cytoplasmic

metabolic enzyme isocitrate dehydrogenase, a seemingly

unlikely candidate for a cancer gene (Figure 1); the mutations

affected a single amino acid in the active site. Subsequent

studies found that specific mutations in IDH1 and IDH2 (IDH1’s

mitochondrial homolog) occurred in >70% of secondary glio-

blastomas, oligodendrogliomas, and high-grade astrocytomas

(Parsons et al., 2008; Yan et al., 2009) and in �15%–30% of

acute myelogenous leukemias (AML) (Mardis et al., 2009).

Because isocitrate dehydrogenases convert isocitrate to
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Figure 1. Somatic IDH1/2 Mutations Produce the Oncometabolite

2HG
Oncogenic effects of 2HG include generation of a CIMP-like phenotype and
inhibition of a-ketoglutarate-dependent enzymes such as histone methyl-
transferases (KMT), histone demethylases (KDM), and prolyl hydroxylases
(EGLN). TET2mutations are mutually exclusive with IDH1/2mutations in leuke-
mias and may exert common downstream effects on DNA methylation. Mutant
IDH1/2 proteins are the targets of emerging drug discovery efforts (boxed).
a-ketoglutarate (a-KG) in the tricarboxylic acid (TCA) cycle, the

observation suggested a previously unrecognized link between

cell metabolism and cancer. It soon became clear that the muta-

tions caused a gain-of-function (or ‘‘neomorphic’’) activity,

whereby isocitrate was converted to a distinct metabolite: the

R-enantiomer of 2-hydroxyglutarate (2HG; Figure 1) (Dang

et al., 2009; Ward et al., 2010). How this ‘‘oncometabolite’’ might

drive cancer, however, remained a mystery.

The answer emerged from a different type of genomic anal-

ysis: genome-wide surveys of DNAmethylation. Themethylation

studies revealed that a subset of glioblastomas (the ‘‘proneural’’

subtype) showed a DNA methylation pattern that strongly

resembled the CpG island methylator phenotype (CIMP) origi-

nally described in colorectal cancer (Noushmehr et al., 2010).

Remarkably, the CIMP-like phenotype was tightly correlated

with the presence of IDH1mutations (Figure 1). A follow-up study

confirmed that introduction of mutant IDH actually caused the

CIMP-like phenotype (Turcan et al., 2012).

Unexpectedly, the mechanism was clarified by yet another

genomic survey, this time involving acutemyelogenous leukemia

(AML). This large-scale study showed that IDH1/IDH2mutations

were mutually exclusive with inactivating TET2 mutations (Fig-

ueroa et al., 2010), suggesting that the two types of mutations

had similar effects and were thus functionally redundant. The

TET2 protein catalyzes 5-methylcytosine hydroxylation in
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a a-KG-dependent manner, and loss of TET2 produces

a CIMP-like phenotype. Studies then showed that 2HG appears

to inhibit several a-KG-dependent enzymes (Xu et al., 2011),

including Jumonji-C domain histone demethylases that affect

gene expression (Lu et al., 2012) and prolyl-4-hydroxylases

(EGLN1/2/3) that regulate hypoxia inducible factor (HIF), which

is involved in certain cancers (Koivunen et al., 2012) (Figure 1).

The surprising discoveries about IDH1/IDH2 have helped to

spark enormous interest in cancer metabolism. They have also

spawned new areas for cancer drug discovery that had little

precedent prior to these cancer genome studies.

Lineage Survival Oncogene Transcription Factors

Another important discovery concerned ‘‘master’’ lineage-

specific transcription factors (TFs). Because such TFs are

typically involved in terminal differentiation of cell types, the pre-

vailing hypothesis was that overexpression would suppress

cancer by promoting lineage maturation and cell-cycle arrest.

Surprisingly, however, an integrative analysis of genome-wide

copy number and transcription showed that MITF, which

encodes the master transcription factor that regulates melano-

cyte survival and differentiation, underwent gene amplification

in a subset of metastatic melanomas (Garraway et al., 2005).

MITF thus served as a prototype for a new category of cancer

genes termed ‘‘lineage survival’’ oncogenes.

Systematic genomic studies subsequently uncovered several

additional lineage survival oncogene TFs. Examples include

NKX2.1 in lung adenocarcinoma, SOX2 in esophageal cancer,

and CDX2 in colorectal cancer (Bass et al., 2009; Salari et al.,

2012; Weir et al., 2007). In hindsight, these TFs are analogous

to the androgen receptor (AR), a nuclear hormone TF that plays

crucial roles in proliferation and survival of normal and malignant

prostate epithelia and is frequently amplified or mutated during

tumor progression (Taplin et al., 1995). Exome-sequencing

studies of castration-resistant prostate cancer have recently

identified somatic mutations in both AR and several key coregu-

lators (Grasso et al., 2012).

Epigenomics

One of the most far-reaching discoveries from genomic studies

has been the critical role of epigenomic changes in tumorigen-

esis, which in turn has unleashed a torrent of hypothesis-driven

studies and drug discovery efforts. Abnormal DNA methylation

and chromatin structure were known to be common in cancers,

but it was unclear whether these epigenomic changes played

a causal role in cancer or were simply a noncausal correlate of

the cancerous state. The question was settled with the recogni-

tion that �40 genes encoding epigenomic regulators show

highly recurrent somatic alterations across a wide range of

cancer types (reviewed in Dawson and Kouzarides, 2012). Muta-

tions that affect the epigenome would seem like a highly efficient

mechanism to rewire cellular circuitry because they provide

a way to affect multiple target genes simultaneously. The next

several sections discuss various epigenomic processes related

to chromatin andDNAmethylation that are affected bymutations

in cancer (Figure 2).

Chromatin: Histone Modification

Genomic studies have provided clear genetic evidence that dys-

regulation of chromatin modifiers drives many types of cancer.

Recurrent mutations were found in genes encoding enzymes



Figure 2. Genes Encoding Epigenetic andChromatin Regulators Are

Frequent Targets of Mutations in Cancer
The enzymes DNMT3A and TET2 regulate 5-methylcytosine and 5-hydrox-
ymethylcytosine production in genomic DNA; the genes encoding these
enzymes are frequently mutated in leukemias. The histone H3 component of
the nucleosome undergoes extensive modifications involving its lysine (K)-rich
tail. Genes encoding enzymes that read, produce, or interpret these modifi-
cations are frequently mutated in cancer. Examples include histone lysine
methyltransferases (KMTs), histone lysine demethylases (KDMs), and histone
acetyltransferases (HATs). Genes encoding components of the SWI/SNF
chromatin-remodeling complex are also recurrently mutated in cancer. Novel
therapeutics targeting chromatin and epigenetic mechanisms have entered
clinical use or are in development (boxed).
that add, subtract, or interpret posttranslational modifications to

histone H3. These enzymes include histone (lysine) methyltrans-

ferases (KMTs) and histone (lysine) demethylases (KDM), which

activate or repress genes by modifying specific lysine residues;

histone acetyltransferases (HATs), which regulate transcription

by adding acetyl groups to the histone H3 tail; and histone

readers, which bind various histone modifications and recruit

additional protein complexes to carry out specific effector func-

tions (Figure 2). Among the KMTs, mutations affect the MLL

subfamily, which acts on lysine 4 of H3 (e.g., H3K4); the NSD

subfamily, which acts on H3K36 (Dolnik et al., 2012); and

EZH2, which methylates H3K27 (Morin et al., 2010). Among the

KDMs, mutations affect JARID1A and UTX, which demethylate

H3K4 and H3K27, respectively. Among the HATs, mutations

affect CREBP and EP300 (Gui et al., 2011; Morin et al., 2011;

Peifer et al., 2012).
The genes encoding histone-modifying enzymes typically

exhibit lineage-restricted mutational patterns. For example, the

NSD1 and NSD3 KMTs have so far been found rearranged

only in AML (Jaju et al., 2001; Rosati et al., 2002), and mutations

affecting the histone demethylases (HDMs) KDM5A and KDM5C

appear to occur exclusively in AML and renal cell cancer,

respectively. However, some genes show amuch broader muta-

tional distribution. AlthoughMLL is named for its associationwith

a particular leukemia subtype (mixed lineage leukemia), cancer

sequencing studies have found recurrent MLL gene mutations

in a variety of hematologic and solid tumors, including small-

cell lung cancer (Peifer et al., 2012), lung squamous cancer

(Hammerman et al., 2012), gastric cancer (Zang et al., 2012),

head and neck cancer (Stransky et al., 2011), and prostate

cancer (Barbieri et al., 2012; Grasso et al., 2012). Interestingly,

the DOT1L KMT, which methylates H3K79, is not itself mutated

but becomes essential in MLL-translocated leukemias (Bernt

et al., 2011). HAT mutations are found in B cell lymphomas (Pas-

qualucci et al., 2011a), small-cell lung cancers (Peifer et al.,

2012), and medulloblastoma (Robinson et al., 2012). These

distinctive patterns suggest that mutations affecting chro-

matin-modifying enzymes contribute to cancer by disrupting

expression of specific target genes that play critical roles in

particular cell types. However, the identities of these target

genes remain unknown, and we lack systematic methods for

identifying them.

Affected tumors are typically heterozygous for apparent loss-

of-function alleles, indicating that haploinsufficiency for these

chromatin-modifying enzymes propels cancer and that

complete loss is cell lethal. (An exception is EZH2, in which

gain-of-function mutants are observed in follicular lymphoma

[Morin et al., 2010], whereas loss-of-function events are seen

in myeloid cancers [Jankowska et al., 2011; Makishima et al.,

2010]). This makes chromatin-modifying enzymes attractive

targets for anticancer drugs because cancer cells carrying only

one functional gene could be uniquely sensitive to inhibitors

(a synergy termed ‘‘synthetic lethality’’). Vigorous drug discovery

efforts are currently underway against many of the enzymes. So

far, the only drugs targeting histone-modifying enzymes in clin-

ical use are the histone deacetylase (HDAC) inhibitors. Ironically,

the HDAC inhibitor vorinostat is approved for treatment of mye-

lodysplastic syndromes and cutaneous T cell lymphomas,

although HDAC genes have not been found mutated in these

(or any other) malignancies.

Chromatin: Nucleosome Remodeling

Another major mutational target affecting chromatin biology is

the SWI/SNF complexes (Figure 2), which regulate chromatin

structure through ATP-dependent nucleosome remodeling (for

a recent review, seeWilson and Roberts [2011]). The importance

of these complexes in tumor biology was initially suggested by

the discovery of biallelic deletions involving SNF5 (a core SWI/

SNF protein) in malignant rhabdoid tumors (an aggressive pedi-

atric cancer). Multiple cancer sequencing surveys then revealed

that the class of genes encoding SWI/SNF factors is one of the

most commonly mutated targets in cancer. In renal cell cancer,

41% of tumors harbor mutations in PBRM1, which encodes

BAF180, a histone acetylation reader and integral component

of the so-called ‘‘BAF’’ SWI/SNF complex) (Varela et al., 2011);
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only the VHL tumor suppressor is mutated more commonly in

this malignancy. Similarly, >50%of ovarian clear cell carcinomas

carry inactivating mutations in ARID1A, which encodes another

BAF protein (Jones et al., 2010; Wiegand et al., 2010). Frequent

ARID1A mutations have since been observed in many other

cancer types, including up to 30% of hepatocellular carcinomas

(Fujimoto et al., 2012; Huang et al., 2012a), 34% of bladder

cancers, and 21% of endometrioid cancers. Its homologs

ARID1B or ARID2 (a component of the ‘‘PBAF’’ SWI/SNF

complex) harbor recurrent mutations in melanoma (Hodis et al.,

2012; Krauthammer et al., 2012), hepatocellular (Fujimoto

et al., 2012; Li et al., 2011), and pancreatic cancers (Biankin

et al., 2012). As with other histone-modifying proteins, the

SWI/SNF gene mutations are typically loss-of-function alleles;

they often exhibit biallelic inactivation or loss of protein expres-

sion, consistent with a tumor suppressor mechanism.

Chromatin: Compaction

Another unexpected chromatin-related target is the chromodo-

main-helicase-DNA-binding (CHD) gene family. CHD proteins

regulate chromatin compaction during stem cell differentiation

and may also promote genome stability (Ho and Crabtree,

2010) (Figure 2). Inactivating CHD1 mutations and deletions

comprise likely founder events (together with SPOP mutations)

in a newly recognized ‘‘ETS-negative’’ genetic subtype of pros-

tate cancer (Barbieri et al., 2012), where they appear to confer

distinct patterns of genome derangement (Huang et al.,

2012b). The homolog CHD4 is frequently deleted in endometrial

cancers (Le Gallo et al., 2012). Histone H3.3 itself contains highly

recurrent hot spot mutations in pediatric astrocytoma and

a subtype of medulloblastoma (Robinson et al., 2012; Schwart-

zentruber et al., 2012). Overall, the discovery of extensive chro-

matin and epigenetic mutations by unbiased cancer genome

characterization has opened up vast new areas of basic and clin-

ical discovery.

DNA Methylation

Systematic surveys have revealed that DNA methylation also

plays a critical role in shaping the cancer genome (Figure 2). In

particular, some cancers show a clear CpG island methylator

phenotype (CIMP). The notion that DNA hypermethylation might

define a biologically important cancer subtype in colorectal

cancer (CRC) originated from focused studies of individual genes

(Toyota et al., 1999), but other reports challenged its existence—

or at least its biological relevance. Systematic interrogation of all

available methylation markers (at that time) across >100 CRC

samples provided definitive evidence for CIMP in CRC (‘‘CRC-

CIMP’’) (Weisenberger et al., 2006). Most CRC-CIMP tumors

show high microsatellite instability (MSI) (Ogino et al., 2006; Wei-

senberger et al., 2006); this is likely due to the fact that such

tumors typically have hypermethylation (and hence repression)

of the MLH locus, whose loss of expression results in MSI. The

etiology of CIMP in CRC remains mysterious, with these tumors

showing few mutations in the DNA methylation machinery.

Subsets of glioblastoma and AML were also found to have

CIMP-like patterns (as described above). In these cases, the

phenomenon is likely due, in part, to 2HG generated frommutant

IDH1/2 proteins (Noushmehr et al., 2010), as described above.

DNA hypomethylation also plays an important role in some

cancers. A whole-genome sequencing survey revealed that
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�25% of AMLs carry inactivating mutations in DNMT3A (Ley

et al., 2010), an enzyme that catalyzes the addition of methyl

groups toCpGdinucleotides. AML cells withDNMT3Amutations

show reduced DNA methylation at the promoter of many genes

involved in cancer (Hájková et al., 2012); these mutations corre-

late with poorer overall survival (Ley et al., 2010). Subsequently,

recurrent DNMT3A mutations were also found in the myelodys-

plastic syndrome (MDS) (Walter et al., 2011), a neoplastic condi-

tion that often progresses to AML.

The recognition of the key role of DNA methylation has galva-

nized interest in drugs that inhibit this process, such as 5-azaci-

tidine and decitabine. Conceivably, these drugs may act in

a synthetic lethal manner against tumors carrying mutations in

DNMT3A and other genes affecting DNA methylation. Azaciti-

dine has proved especially intriguing: it is the first drug to

improve the survival of patients with myelodysplastic syndrome

(MDS) and has also shown promising efficacy in AML (reviewed

in Estey [2007]). DNMT3Amutations or other altered methylation

phenotypes may define leukemic patient subpopulations that

are more likely to benefit from these drugs (Marcucci et al.,

2012). As with chromatin dysregulation, the critical genes

affected by aberrant DNA methylation remain unclear.

DNA Hydroxyl Methylation

Genomic studies have uncovered a link between a novel epige-

netic modification and cancer. In 2009, biochemical studies

identified a new type of DNA modification: the conversion of

5-methylcytosine (5mC) at CpG islands to a hydroxylated

variant called 5-hydroxymethylcytosine (5hmC) by the ten/

eleven translocation (TET) family of DNA hydroxylases (Kriaucio-

nis and Heintz, 2009; Tahiliani et al., 2009) (Figure 2). Soon

thereafter, genomic surveys found that a family member TET2

shows recurrent inactivating mutations in AML, MDS, and other

myeloproliferative disorders (Delhommeau et al., 2009; Lange-

meijer et al., 2009). As noted above, the TET enzymes require

a-ketoglutarate for their activity and are inhibited by the 2HG on-

cometabolite product of mutant IDH1/2. TET2 and IDH1/2 muta-

tions thus act, at least in part, through a common mechanism;

as would be expected, these mutations rarely co-occur in

AML. Interestingly, however, TET2 and DNMT3A mutations

frequently co-occur in MDS, pointing to an as-yet unexplained

cooperativity between dysregulation of 5mC and 5hmC in leuke-

mogenesis.

RNA Splicing

Complementing the targets above affecting RNA transcription,

cancer sequencing uncovered other important targets involved

in RNA splicing (Figure 3). Though it had long been known that

cancers showed aberrant splicing patterns, it was impossible

to know whether these events played a causal role in cancer or

were simply an effect of cancer.

The answer became clear with exome-sequencing studies in

chronic myelogenous leukemia (CLL) and myelodysplastic

syndromes (MDS). In CLL, the spliceosome gene SF3B1 is

mutated in 10%–15% of cases, and other spliceosomal genes,

such as SFRS1, SFRS7, and U2AF2, are also mutated at lower

frequencies (Puente et al., 2011; Quesada et al., 2012; Wang

et al., 2011a). In MDS, the spectrum is even more striking:

45%–85% of cases harbor mutations in a spliceosome gene,

with SF3B1 and U2AF1 being the most common and other



Figure 3. Cancer-Associated Mutations in

the RNA-Splicing Machinery
Genes encoding spliceosomal components are
recurrently mutated in both hematologic malig-
nancies and solid tumors. Drugs that target SF3B1
have entered clinical trials.
genes (such as SF3A1, ZRSR2, SRSF2, and U2AF2) occurring

at lower frequencies (Papaemmanuil et al., 2011; Yoshida et al.,

2011). Spliceosomal genes have also been found significantly

mutated in solid tumors—most notably, U2AF1, SF3B1,

U2AF2, and PRPF40B mutations in lung adenocarcinomas

(Imielinski et al., 2012). SF3B1 is also recurrently mutated in

breast cancer (Ellis et al., 2012) and pancreatic cancer (Biankin

et al., 2012).

The pattern of mutations in the spliceosomal genes contains

important clues about their function. First, the mutations tend

to occur in a mutually exclusive fashion in all tumor types exam-

ined, suggesting that they play similar roles and are thus func-

tionally redundant with respect to causing cancer (for a recent

review, see Lindsley and Ebert [2013]). Second, several of the

genes carry heterozygous missense mutations affecting specific

protein domains, suggesting that they confer a gain of function.

SF3B1 (encoding a member of the splicing factor 3b complex,

which interacts with SF3A proteins and a snRNA species to

form the U2 small nuclear ribonucleoprotein [snRNP]) has muta-

tions affecting the carboxy-terminal HEAT domains. U2AF1

(encoding a member of the U2 snRNP auxiliary factor, a spliceo-

somal component that binds the 30 splice acceptor site within

target pre-mRNAs) has mutations affecting conserved zinc

finger domains. SRSF2 (a serine-arginine-rich protein that medi-

ates U2 snRNP assembly through binding of exon-splicing

enhancer elements within pre-mRNA species) also has distinct

codon localizations (Yoshida et al., 2011). In contrast, the

ZRSR2 gene (encoding a spliceosomal adaptor protein) has

mutations distributed throughout its open reading frame and

has frequent nonsense mutations; the pattern is indicative of

loss-of-function mutations. What is missing, of course, is knowl-

edge of the specific aberrant cancer-related splicing events

caused by these mutations.

Genotype-phenotype connections offer some additional

clues. In MDS, SF3B1 mutations occur primarily in subtypes

associated with ring sideroblasts (Papaemmanuil et al., 2011;

Yoshida et al., 2011), whose presence signifies defective eryth-

rocyte maturation. This observation raises the possibility that

mutated SF3B1 may cause ring sideroblast formation, at least

in some MDS subtypes, by governing splicing of a key erythroid

lineage differentiation factor.

Mutations in several splicing factors carry prognostic informa-

tion that might influence clinical management. For example,

U2AF1 mutations have been linked to increased progression

from MDS to AML, and SRSF2 mutations correlate with the so-

called chronic myelomonocytic leukemia (CMML) subtype of

MDS. In CLL, SF3B1 mutations correlate with more rapid

disease progression and lower overall survival (Quesada et al.,

2012; Wang et al., 2011a). U2AF1 mutations were associated
with poor progression-free survival in lung adenocarcinoma

(Imielinski et al., 2012).

Splicing factors were not previously considered attractive

targets for anticancer therapies, but that assessment is changing

(Figure 3). Indeed, several small molecules and natural products

known to target the spliceosome have been reported, including

spliceostatin A (SSA), a metabolite derived from Pseudomonas

that inhibits the SF3b complex and suppresses splicing

in vitro, and pladienolide, a compound produced by

Streptomyces platensis that inhibits the SF3B1 protein directly

(Kaida et al., 2007). A derivative of pladienolide called E7107

has entered phase I clinical trials and shows moderate activity

in thyroid cancer (Folco et al., 2011).

Protein Homeostasis

Genome-wide and exome-wide sequencing inmultiple myeloma

(MM) suggested an unexpected (and still unexplained) role of

protein synthesis and degradation. In MM,mutations were found

at high frequencies inDIS3, FAM46C, and XBP1 (Chapman et al.,

2011a). DIS3 is an RNA exonuclease that regulates RNA abun-

dance through the exosome complex. FAM46C is a protein

whose function remains unknown but whose expression pattern

is nearly perfectly correlated with that of genes encoding ribo-

somal proteins, eukaryotic initiation factors, and translation elon-

gation factors (Chapman et al., 2011a). XBP1 encodes a factor

involved in the unfolded protein response; mutations in the

mouse homolog cause a myeloma-like condition.

Unbiased genomic studies have also uncovered unexpected

roles for the ubiquitination machinery in cancer. In prostate

and endometrial cancers, mutations in SPOP have been

observed in 8%–14% of cases (Barbieri et al., 2012; Kan et al.,

2010; Le Gallo et al., 2012). SPOP encodes the substrate recog-

nition component of an E3 ubiquitin ligase complex. In prostate

cancer, the SPOP mutations affect highly conserved amino

acid residues situated within the substrate-binding motif

(MATH domain), suggesting that they abrogate normal ligase/

substrate interactions. These mutations are mutually exclusive

with ETS rearrangements, thereby defining a distinct genetic

subtype of prostate cancer (Barbieri et al., 2012). In endometrial

cancer, SPOP mutations also occur in the MATH domain but

involve different amino acid residues than those seen in prostate

cancer (Le Gallo et al., 2012). The distinct pattern of mutations in

these two cancers suggests loss of recognition for distinct

substrates, leading to their accumulation.

The ubiquitin ligase gene FBXW7 shows recurrent mutations in

endometrial, head/neck, bladder, and GI cancers but only rarely

shows recurrent mutations in prostate cancer. In contrast to

SPOP, the mutations appear to be simple loss-of-function

events. The ubiquitin ligase gene WWP1 thus far only shows

recurrent mutations in liver cancer (Fujimoto et al., 2012). The
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Figure 4. Genetic Alterations Affecting Lineage Specification Are

Common in Squamous Tumors
NOTCH and several other lineage regulatory factors are disrupted by genomic
alterations in lung, cervical, head/neck, and cutaneous squamous carci-
nomas. SOX2 is also a lineage survival oncogene that regulates squamous
maturation. Genes that encode proteins shaded in red undergo mutational
activation or amplification; those shaded gray undergo mutational inactivation
or deletion.

Figure 5. Genetic Alterations Disrupt Multiple Cellular Processes
Alterations in a range of cellular processes presumably contribute to cancer
through their action on one or more target genes, mRNAs, or proteins,
although the precise targets remain unknown in many cases (illustrated by
shaded ovals). Even in advance of such knowledge, many mutations suggest
potential targets for therapeutic development and allow stratification for
clinical trials of targeted drugs.
distinct spectra of cancers seem likely to result from insufficient

degradation of different proteins that are critical for different cell

types. Finding the protein targets is a high priority.

Squamous Differentiation

Exome-sequencing studies in head and neck squamous cell

carcinoma (HNSCC) revealed unexpected roles for pathways

involved in squamous cell differentiation (Agrawal et al., 2011;

Stransky et al., 2011). The studies found mutations in NOTCH1

in �15% of cases, as well as mutations and focal copy number

alterations of NOTCH2 and NOTCH3 in an additional 11%

(Stransky et al., 2011) (Figure 4). Whereas activating NOTCH1/

2 mutations had been reported in various blood cancers (Lohr

et al., 2012; Pasqualucci et al., 2011b; Puente et al., 2011;

Weng et al., 2004), the NOTCH mutations in HNSCC were

clearly loss-of-function events. Parallel studies in myeloid

leukemia also identified recurrent loss-of-function NOTCHmuta-

tions (Klinakis et al., 2011).

The NOTCHmutations turned out to be just a part of the story.

A more sophisticated analysis (of gene sets with recurrent muta-

tions) pointed to genes known to be involved in epidermal devel-

opment and squamous differentiation in HNSCC (Stransky et al.,

2011) (Figure 4). Additional genes mutated in HNSCC (such as

RIPK2, EZH2, and DICER1) were linked to the squamous differ-

entiation program based on results from genetically engineered

mice. Two further genes (SYNE1 and SYNE2, mutated in 20%

and 8% of cases, respectively) were also implicated; these

genes encode proteins that control nuclear polarity and spindle

orientation, which stand upstream of NOTCH signaling in squa-

mous lineage development (Williams et al., 2011). In all, nearly

one-third of HNSCC tumors appeared to harbor at least one

mutation predicted to affect squamous differentiation.

Comprehensive genomic studies soon demonstrated the

importance of dysregulated squamous differentiation in other

tumor types. For example, inactivating NOTCH1/2 mutations

occur in >75% of cutaneous squamous cell carcinomas (Wang

et al., 2011b). Moreover, a study of squamous lung cancer

revealed that 44% of cases harbored mutations in genes that
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regulate squamous differentiation (Hammerman et al., 2012).

The loss of function in squamous differentiation contrasts with

the SOX2 lineage survival TF oncogene, which undergoes

frequent amplification in squamous lung cancer, HNSCC,

and cervical squamous cancers (http://www.cbioportal.org/

public-portal/index.do).

Connecting the Dots: From Cancer Genes to Cancer
Processes
Hanahan and Weinberg have proposed ‘‘hallmark’’ processes

thatmust become dysregulated in tumorigenesis andmetastasis

(Hanahan and Weinberg, 2000, 2011). These processes include

genome instability, unlimited cell division, sustained proliferative

signaling, evasion of growth suppression, cellular energetics,

and resisting apoptosis. Many classical cancer genes encode

proteins that mediate or control such processes: for example,

mutations in receptor tyrosine kinases or cell-cycle inhibitors

can be directly understood in terms of ‘‘jamming the accelerator

pedal’’ or ‘‘eliminating the brakes’’ on cell growth.

By contrast, many of the newly discovered cancer genes

affect global processes whose precise connection to cancer

remains obscure. These cancer genes act by deranging gene

expression (through changes to chromatin and DNA methyla-

tion), RNA splicing, protein synthesis and degradation, and

cellular metabolism (Figure 5). Presumably, these global

changes propel cancer by affecting one or more specific targets

involved in cancer processes—activating or repressing specific

http://www.cbioportal.org/public-portal/index.do
http://www.cbioportal.org/public-portal/index.do


genes, altering the isoforms of specific mRNAs, and increasing

or decreasing steady-state levels of specific proteins. The key

targets are likely cell type specific, accounting for the presence

of specific subsets of driver genes in particular cancer types.

For the most part, we are ignorant of the precise targets—or

whether we are looking for single targets or multiple targets.

Indeed, mutations affecting global processes seemingly provide

an efficient mechanism by which multiple coregulated targets

might be affected. In some respects, the situation may be

analogous to amplification and deletion of chromosome arms,

which may provide a similarly efficient means to dysregulate

multiple targets. In each case, identifying the full range of target

genes will likely require unbiased genomic surveys at the DNA,

RNA, and protein levels to generate hypotheses, as well as

focused experiments to prove them.

Connecting the new cancer genes to known (or as-yet

unknown) cancer processes will surely accelerate efforts to

understand and treat cancer. Of course, therapeutic progress

can be made even without a full understanding of their action.

For example, inhibitors of the neomorphic IDH1/2 enzymes or

perturbed splicing factors may prove valuable even without

understanding the full range of enzymes affected by 2HG or

SF3B1. Moreover, the set of cancer genes mutated in a tumor

provides a powerful classification tool, identifying natural

subtypes that can be studied in both preclinical and clinical

investigation to detect distinct vulnerabilities and correlate

outcomes.

Completing the Picture: Long Tails, Dark Matter,
Heterogeneity, and Heredity
Genomic studies have definitely shown that our previous inven-

tory of cancer genes was far from complete. The question now is

do we finally have a near-comprehensive catalog? The honest

answer: we don’t know.

Long Tails

Formany cancer types, a handful of cancer genes aremutated at

high frequency, but many more cancer-related genes are found

mutated at much lower frequencies. For example, a recent

genomic study of breast cancer reported 40 loci that were

mutated at statistically significant rates (Stephens et al., 2012);

of these, 53% of the apparent driver mutations or focal copy

number alterations were concentrated in six genes (TP53,

PIK3CA, ERBB2, FGFR1/ZNF703, and GATA3), and the

remainder were dispersed across 34 genes. Only eight of the

genes were mutated in at least 10% of breast cancers. Many

tumor types exhibit similar ‘‘long tail’’ distributions.

Some of the genes found mutated at low frequencies in some

cancers are more commonly (and significantly) mutated in other

cancers. In the breast cancer example mentioned above, ‘‘long

tail’’ genes that are significantly mutated in other cancers include

the SWI/SNF complex genes ARID1A and ARID1B, the

KMT-encoding genes MLL2 and MLL3, and KRAS. This finding

might suggest that the discovery of new driver genes is ap-

proaching a plateau. On the other hand, the fact that so many

driver genes occur at lower frequencies raises the possibility

that many such genes may yet remain undiscovered. Moreover,

some tumors (e.g., some primary prostate cancers) appear to

lack even a single mutation in a proven driver gene.
The problem is due, in part, to the fact that most studies to

date have been insufficiently powered—lacking adequate

sample size to detect low-frequency events and/or adequate

depth of sequence coverage to overcome impurity due to

stromal contamination. Fortunately, it should be feasible to

enumerate all genes carrying nonsynonymous coding mutations

in at least 2% of tumors of every cancer type by sequencing

a sufficiently large number of tumor-normal pairs. (Roughly 950

pairs will be needed per tumor type if the background mutation

rate in the cancer is 2 mutations per Mb and 2,500 pairs if the

rate is 10/Mb.) This scale seems readily achievable for many

tumor types over the next several years.

Dark Matter

In contrast to point mutations in coding regions, our ability to

discover and understand other types of driver mutations is still

distressingly limited. Many more important cancer drivers may

be lurking in the places that we cannot currently interpret. These

include copy number alterations, chromosomal rearrangements,

and noncoding regions.

As noted above, gains and losses spanning whole chromo-

some arms occur commonly in most types of cancer, but it is

difficult to pinpoint the key genes for which the presence of

a few extra copies contributes to cancer. Even for focal amplifi-

cations or deletions, finding the target genes can be difficult. A

study of copy number alterations across cancer types found

that proven cancer genes were known for less than half of recur-

rent focal amplifications and an even smaller proportion of recur-

rent focal deletions (Beroukhim et al., 2010). Incorporating

sample-matched data sets can help to suggest candidates for

functional validation. For example, a study in glioblastoma

showed that gain of extra copies of chromosome 7 was associ-

ated with dysregulation of the HGF-MET axis (Beroukhim et al.,

2007); pharmacologic experiments showed that cell lines

carrying nonfocal chromosome 7 gains together with HGF and

MET overexpression were preferentially dependent on MET

signaling.

Chromosomal rearrangements are also pervasive in many

cancers, but our ability to characterize and interpret their impact

has been limited. Whereas basic cancer genome analyses can

be accomplished by mapping short DNA sequences to a fixed

reference sequence, comprehensive study of rearrangements

requires obtaining larger-scale ‘‘linking’’ information to recon-

struct unexpected genomic junctions and performing transcrip-

tome sequencing to detect expressed fusion genes. These

efforts have been aided by recent computational advances,

such as algorithms that reconstruct transcriptomes without the

need for an underlying reference genome (Grabherr et al.,

2011). Most rearrangements may be random passenger events,

but some clearly disrupt cancer genes by creating fusion

proteins or by subjecting a gene to new regulation. Genome

analysis has identified several new fusions involving known

cancer genes, including RAS, RAF, ERG, and PTEN, in prostate

cancer and in other malignancies (L.A.G. and E.S.L, unpublished

data; Palanisamy et al., 2010; Wang et al., 2011c) and NOTCH

genes in breast cancers (Robinson et al., 2011). Although rela-

tively few instances of recurrent rearrangements implicating

new cancer genes have emerged (possibly owing to limited

sample sizes and the challenge of interpreting these events),
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those that have been discovered may implicate new biological

processes. Examples include MAST kinases in breast cancer

(Robinson et al., 2011) and R-spondin family members in 10%

of colon cancers (Seshagiri et al., 2012).

The great uncharted frontier is the >98% of the human

genome that does not encode proteins. Our ignorance is due

to two factors. First, we have lacked adequate data because

cancer genome studies to date have largely focused on the

exome rather than on the whole genome for reasons of cost.

Second, we lack adequate analytical techniques to recognize

recurrent mutations in nongenic territory. To detect a cancer-

associated target, one must aggregate mutations across

a defined region to test whether the rate is sufficiently elevated

above background. This is straightforward for protein-coding

regions, where one can aggregate nonsynonymous mutations

across thousands of bases. But it is more challenging for the

rest of the genome. Unbiased searches require scanningmillions

of small regions across the genome to find those with an unusu-

ally high mutation rate. If one searches with a small window, the

mutational signal will be weak (unless the mutation frequency is

very high) and detection will require large sample numbers. If one

uses a large window size, the signal may be obscured by random

noise in the surroundings. At present, the best approach may be

to focus on regions defined by features corresponding to known

biological functions, such as promoters, evolutionary conserva-

tion, and epigenomic modification.

A recent study of regulatory regions in melanoma has

confirmed that important mutations may be lurking in noncoding

regions (Huang et al., 2013). Whole-genome sequencing re-

vealed the presence of highly recurrent somatic mutations at

two specific nucleotides situated within the promoter of the

TERT gene, which encodes a reverse transcriptase component

of the telomerase enzyme. Both of these mutations are cyti-

dine-to-thymidine transitions that generate a de novo binding

site for the ETS transcription factor. These sites increase expres-

sion from the TERT promoter in reporter assays. The mutations

occur in >70% of melanomas and �16% of other tumor types

examined, including bladder and hepatocellular carcinomas.

Heterogeneity

Cancer genome analyses have largely focused on tumors as

a whole. Yet it has been clear for decades that tumors show

extensive cellular and molecular heterogeneity. Indeed, hetero-

geneity was inherent in Nowell’s original clonal model for tumor

evolution (Nowell, 1976). Some early genomic studies have

begun to come to grips with tumor heterogeneity. Initial forays

have documented subclonal variation across distinct

geographic regions of a primary tumor (Gerlinger et al., 2012)

and within hematopoietic malignant populations (Ding et al.,

2012).

Studies of heterogeneity are beginning to provide fascinating

glimpses into paths of tumor evolution. For example, a study of

21 breast cancers showed that the most recent common

ancestral tumor cell—which contains the full complement of

mutations common to all tumor cells—arose remarkably early

in ‘‘molecular time’’ (Nik-Zainal et al., 2012b). The precursor

cell typically gives rise to a dominant subclone that represents

at least 50% of all cells in the primary tumor. Knowledge of in-

tratumoral heterogeneity has also revealed instances of conver-
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gent evolution. In one study of renal cancer, only 30%–35% of

somatic mutations were concordant across multiple primary

and metastatic sites sampled (Gerlinger et al., 2012); however,

several cancer genes contained distinct genomic alterations

that had arisen in geographically disparate regions of the

primary tumor. This observation thus revealed a remarkable

mutational consolidation that engaged critical pathways linked

to chromatin regulation (SETD2, KDM5C) or signal transduction

(PTEN, mTOR).

Tumor heterogeneity could have important implications for

‘‘precision’’ cancer medicine. Some subclones may contain

pre-existing mutations that confer drug resistance or accelerate

tumor relapse in cancers that show poor clinical responses to

targeted inhibitors. Studies that seek to stratify patients for clin-

ical trials of targeted agents based on specific ‘‘actionable’’

mutations may be confounded if a biopsy sample is not repre-

sentative of the whole tumor. On the other hand, the ability to

identify driver or resistance mutations within subclonal popula-

tions may allow improved prediction of clinical outcomes

(Landau et al., 2013). The growing understanding of intratumoral

heterogeneity may inform the design of clinical studies that

account for this process (e.g., by following the therapeutic

response of the biopsied lesion in addition to the overall tumor

burden) and circumvent its subversive effects (e.g., by devel-

oping therapeutic combinations directed against major and

minor subclones).

Studies of cancer heterogeneity will be accelerated by recent

genomic advances enabling single-cell sequencing (Navin et al.,

2011). Whole-exome sequences have been produced from

single cells in both hematologic neoplasms and solid tumors

(Hou et al., 2012; Xu et al., 2012). Moreover, new protocols

that yield more uniform and accurate whole-genome amplifica-

tion have been developed (Zong et al., 2012). Single-cell anal-

yses have already provided new insights into the evolutionary

history of tumors within individual patients and have revealed

functional differences across individual tumor cells (Kreso

et al., 2013). In the future, these advances may enable detailed

genomic studies of circulating tumor cells, thereby providing

high-resolution monitoring of therapeutic responses or emerging

resistance mechanisms and facilitating detection of aggressive

tumor subclones.

Heredity

Although many of the genetic factors that drive a cancer are

acquired through somatic mutation, some are inherited at birth.

Epidemiological studies have long noted an increased risk of

cancer in relatives of affected individuals (Pomerantz and

Freedman, 2011). Genomics has revealed many genes that influ-

ence predisposition to cancer, although the picture remains far

from complete. Our focus in this Review is on somaticmutations,

but we briefly summarize the current state of progress for in-

herited variation (see recent reviews by Hindorff et al. [2011]

and Chung and Chanock [2011]).

One method to identify genes that confer predisposition to

cancer is to study rare, highly penetrant Mendelian cancer

syndromes. These syndromes arise when mutant alleles confer

such a high increased risk (>10-fold) that it is straightforward

to trace their transmission in families by linkage analysis. More

than 100 genes underlying such cancer syndromes have been



identified, including those underlying retinoblastoma (RB1),

breast cancer (BRCA1, BRCA2), and colon cancer (APC, MU-

TYH and the mismatch repair genes MLH1, MSH1, MSH6, and

PMS2). Such genes have been deeply informative about cancer

biology but together account for <5% of the estimated herita-

bility of cancer (Cazier and Tomlinson, 2010).

To identify cancer genes that confer more modest risks, it is

necessary to use population-based association studies rather

than family-based linkage studies. The methodology for associ-

ation studies depends on whether one wishes to study

‘‘common’’ (>1%) or ‘‘rare’’ (<1%) variants. Common variants

are frequent enough that they can be tested for their individual

effects on cancer risk by genotyping of millions of variants in

cases and controls in ‘‘genome-wide association studies’’

(GWAS) (Altshuler et al., 2008). Rare variants must be combined

together for analysis: studies examine the aggregate frequency

of rare coding variants in each gene to look for an elevated

frequency in cases versus controls. More than 150 cancer risk

loci have been identified thus far, with most having been found

through GWAS (Chung and Chanock, 2011; Hindorff et al.,

2011). The common alleles appear to include many regulatory

variants and to confer a lower increased risk (<30%), whereas

the rare alleles affect coding regions of known cancer genes

(such as ATM, BRIP1, CHEK2, PALB2, and RAD51C in breast

cancer) and tend to have higher risk (2- to 3-fold). The relative

roles of the two classes vary among cancer types. Importantly,

the risk factors identified to date explain only a fraction of the

heritability of cancer (Hindorff et al., 2011). Genomic studies

with much larger samples will be needed to obtain a fuller picture

of the inherited basis of cancer risk.

Understanding the mechanisms by which common inherited

genetic variants predispose to cancer will require integrative

genomic analysis, which will likely yield important biological

insights. One instructive case is found in a 500 kb ‘‘gene desert’’

in chromosome 8q24. Whereas most cancer-associated loci are

tumor-type specific, this region contains variants that affect risk

of prostate, colon, esophagus, head/neck, breast, and pancreas

cancers (reviewed in Hindorff et al. [2011]). Epigenetic and chro-

mosome conformation studies in human and genetic engi-

neering studies in mouse suggest that the variants alter distal

regulatory sequences controlling theMYC locus, which lies telo-

meric to the region (Ahmadiyeh et al., 2010; Pomerantz et al.,

2009; Sur et al., 2012; Tuupanen et al., 2009). A similar situation

occurs in a 500 kb region in 9p21, where different variants affect

multiple types of cancer (including breast cancer, melanoma,

glioma, and leukemia) as well as noncancer-related diseases

such as type 2 diabetes andmyocardial infarction; these variants

likely alter regulation of the cell-cycle genes CDKN2A/CDKN2B.

The observation that a number of additional cancer-related loci

also affect diabetes (or insulin dysregulation) suggests an impor-

tant role for metabolic processes in cancer (Dupuis et al., 2010;

Pal et al., 2012).

Finally, understanding the inherited factorsmay help to explain

some disparities among ethnic groups. For example, a propor-

tion of the higher risk of prostate cancer in African Americans

and other men of African descent may be due, in part, to allele

frequency differences at chromosome 8q24 (Haiman et al.,

2011; Murphy et al., 2012).
Applying the Knowledge: Diagnostics and Therapeutics
The ultimate test of cancer genomics will be its ability to improve

diagnostics and therapeutics. Academic centers are already

beginning to adopt ‘‘first-generation’’ genome profiling platforms

to guide cancer treatment (Dias-Santagata et al., 2010;

MacConaill et al., 2009; Thomas et al., 2007; Wagle et al.,

2012) These platforms involve testing a few hundred specific

cancer-associated mutations or performing full sequencing of

a limited set of cancer-associated genes (Lipson et al., 2012;

Wagle et al., 2012). The early returns suggest that, in �40%–

60% of cases for many common solid tumors, the information

points to at least one alteration that might influence therapeutic

decision-making or might suggest enrollment in a particular clin-

ical trial (Beltran et al., 2012; Hammerman et al., 2012; CGAN,

2012). As sequencing costs fall, diagnostics may move to

whole-exome or whole-genome sequencing. The challenge will

be to filter and annotate the results for oncologists, based on

a constantly changing landscape of scientific knowledge. Even-

tually, genomic analysis will likely become part of the standard of

care for cancer patients.

Cancer genomics will also become a key component in the

design, execution, and interpretation of clinical trials. Investiga-

tors are already using genomic information for retrospective clin-

ical analyses that correlate treatment response with specific

genomic features. There is growing interest in using deep

genomic characterization of ‘‘exceptional cases,’’ such as rare

tumors that show a complete clinical response to a particular

anticancer regimen. For example, a recent tumor genome-

sequencing study of a bladder cancer patient who experienced

a complete response to a TOR inhibitor (everolimus) identified

two distinct cancer gene mutations (TSC1 and NF2) predicted

to affect oncogenic TOR signaling (Iyer et al., 2012). Sequencing

of additional everolimus-treated tumors confirmed that TSC1

mutations correlate with clinical response.

The prospective use of genomic information may substantially

transform trial design. Cancer trials have traditionally selected

patients based on histologic tumor subtypes. However, it makes

more sense to test targeted therapeutics on the subset of

patients carrying the relevant genetic lesions; by selecting the

patients most likely to benefit, one decreases sample size,

cost, and unjustified harm. In some cases, it will make sense to

enroll patients carrying the same genetic alteration across

a wide range of tumor types (for example, a trial led by investiga-

tors at Memorial Sloan-Kettering Cancer Center in which

BRAFV600 mutant tumors from colon, thyroid, lung, and other

organ sites are treated with a selective RAF or MEK inhibitor).

Moreover, novel designs are becoming possible in which one

simultaneously tests multiple drugs or drug combinations. In

these ‘‘basket trials,’’ patients are assigned to different thera-

peutic regimens based on the specific genetic profiles in their

tumor (Kim et al., 2011). Basket trials may employ an ‘‘adaptive

design,’’ allowing ‘‘real-time’’ adjustments if hints of specific

genotype-driven responses are detected (Berry, 2011). Trials

can further be shaped by genomic analysis from serial biopsies

to assess pharmacodynamics response and to characterize

the presence of resistance mechanisms. It may be useful to

create a worldwide ‘‘clearinghouse’’ mechanism that connects

patients to trials based on their genotype, especially to obtain
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a large enough sample to evaluate responses in tumors with

rarer genetic features.

Cancer drug discovery efforts are already being shaped by the

findings from genomic studies. In some cases, the product of the

mutated gene may be an appropriate drug target. In many other

cases, mutations may confer specific vulnerabilities on the

cancer cell that can be discovered through functional genomic

studies, such as comprehensive gene inhibition screens with

RNA interference across large numbers of cancer cell lines

with varying genotypes.

Beyond the development of specific drugs, knowledge of the

cancer genome will be critical to design combination therapies,

which will be essential for conquering cancer. Most tumors even-

tually develop resistance to single-agent therapeutics (reviewed

in Garraway and Jänne [2012]). For example, the use of RAF

andMEK inhibitors in BRAFmutantmelanomas leads to spectac-

ular responses, but tumors reappear within a year (Chapman

et al., 2011b; Flaherty et al., 2012a, 2012b; Sosman et al., 2012).

Multiple genetic mechanisms of resistance have been described

(oncogenicNRASmutations, COT/MAP3K8 gains,BRAF amplifi-

cation, activatingMEK1mutations, and NF1 loss), each of which

produces sustained MAP kinase (ERK) activity in the presence of

drug (Emery et al., 2009; Johannessen et al., 2010; Nazarian et al.,

2010; Poulikakos et al., 2011; Wagle et al., 2011; Whittaker et al.,

2013). These findings raise the possibility that adding an ERK

inhibitor to existing RAF/MEK inhibitor regimens could provide

an additional clinical benefit (Whittaker et al., 2013).

Systematic preclinical studies may make it possible to antici-

pate the mechanisms of resistance, allowing therapeutic scien-

tists to plan for resistance long before it arises in the clinic. For

example, a recent study performed large-scale screens (using

RNAi knockdown and ORF overexpression) to identify genes

whose loss or amplification can confer resistance to RAF inhibi-

tion in amelanoma cell line; the results were confirmed by clinical

observations in patients’ tumors (Johannessen et al., 2010;Whit-

taker et al., 2013). Another group systematically screened

stromal cell lines to identify those that secrete factors that confer

resistance on adjacent cancer cells; the screen revealed that

hepatocyte growth factor confers resistance to RAF inhibition

(Straussman et al., 2012). Such approaches may make it

possible to formulate rational combination therapies even before

the results of single-agent clinical trials are known.

In the end, combination therapy depends on shifting the odds

of resistance. There is cause for optimism: mathematical

modeling suggests that resistance may often be due to pre-ex-

isting mutations in the tumor cell population (Michor et al.,

2005). If so, it should be possible to prevent recurrence by treat-

ing simultaneously with drugs directed against several indepen-

dent targets so that the chance of a single cell carrying all the

necessary resistance mutations is vanishingly small. This is, of

course, the basis for the successful triple-drug combinations

against HIV. Ultimately, cancer genomics should aim to provide

a comprehensive roadmap for selecting rational, multidrug

combinations for anticancer therapy.

Next Steps for Cancer Genomics
The early fruits of cancer genome studies have confirmed

Renato Dulbecco’s prediction about the value of complement-
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ing ‘‘piecemeal approaches’’ with systematic genome-wide

studies. The results have already opened new frontiers in basic,

translational, and clinical investigation. Still, current studies

have only scratched the surface of what can be learned from

comprehensive study of the cancer genome. Cancer genomics

has largely focused on documenting the mutations in primary

tumors. Over the coming years, the field should expand

its focus to gather systematic information to inform a wider

range of biological and clinical questions. Below, we suggest

four important components for the next phase of cancer

genomics.

Complete the Mutational Atlas of Primary Tumors

A straightforward but critical component is to finish compiling

the catalog of significantly mutated genes in primary tumors of

every feasible cancer type. Given the long tail of cancer genes

and the variable background mutation rates, such studies will

require thousands of tumor-normal pairs. Why bother to press

for completeness? Scientifically, because the low-frequency

drivers may in aggregate make a substantial contribution and

because they are likely to harbor further surprises. Medically,

because physicians will want to be able to recognize all driver

mutations in each patient to optimize therapy. Fortunately, these

efforts should become increasingly feasible and affordable given

the decreasing costs of sequencing and the increasing ability to

analyze small amounts of starting material from formalin-fixed,

paraffin-embedded archival samples. The analysis must expand

beyond the exome to include the whole genome (including long-

range links to detect translocations), the transcriptome, and the

epigenome (at least the methylome and key chromatin modifica-

tions). Improved laboratory and analytical methods will be

needed to discern the targets of nonfocal chromosome copy

number aberrations, epigenomic modifications, and nongenic

translocations. In addition, the genomic information should be

thoroughly mined to identify germline variants that contribute

to cancer risk.

Expand the Mutational Atlas beyond Primary Tumors

The second component is to systematically expand the atlas

beyond primary tumors to include the natural history of human

cancer, as well as the homology to cancer in key model systems.

A mutational atlas of the natural history of cancer would involve

comprehensive genomic analysis of preneoplastic lesions,

metastases from various organ sites, and tumors that show

different types of responses to therapies, including extreme

response, intrinsic resistance, and acquired resistance. Ideally,

all clinical trials in oncology would be subject to such analysis.

Genomic characterization should also be applied to animal

models of cancer so that we can better connect these to human

cancers based on mechanism. In addition to genetically engi-

neered mouse models, intensive studies of naturally occurring

cancers in large animals, especially dogs (Karlsson and

Lindblad-Toh, 2008), may provide both insights and important

preclinical models for drug testing.

Create a Functional Encyclopedia of Altered Pathways

and Acquired Vulnerabilities

Though a mutational catalog will provide a comprehensive

picture of cancer genomes, this catalog alone is not enough.

We need to produce a functional encyclopedia of altered cellular

pathways and acquired vulnerabilities that correspond to each



cancer genome. Genomic approaches can propel systematic

functional studies, just as they have propelled comprehensive

structural studies. Building a functional encyclopedia will involve

(1) creating tractable models representing the full range of

cancer genotypes and (2) characterizing these models with

respect to their genomic alterations, essential pathways, and

therapeutic vulnerabilities. Already, ongoing projects are assem-

bling large collections of cancer cell lines; defining their genomic

changes; characterizing their cellular states at the RNA, protein,

and posttranslational levels; and determining their sensitivities to

anticancer drugs, RNAi-based inhibition of every gene, and

microenvironmental interactions (Barretina et al., 2012; Garnett

et al., 2012). With a sufficiently large collection of cell models,

one can correlate pathways and vulnerabilities with specific

genetic lesions, providing invaluable insights into cancer biology,

markers for patient selection in clinical trials, and potential new

targets for cancer drug development.

One limitation has been that current cancer cell lines represent

a biased sampling of cancer and cancer genotypes, owing to

differences in the ability to derive cell lines. However, new

methods (such as Rho kinase inhibitor-treated feeder layers

and ‘‘organoid’’ culture systems) appear poised to greatly

expand the repertoire of available cancer models (Huch et al.,

2013; Liu et al., 2012). Patient-derived xenografts can also play

a key role in preclinical studies of new therapeutics.

Enable and Promote Sharing of Cancer Genomic

Information

Finally, there is one critical component that is an essential foun-

dation for the others: widespread information sharing. Cancer

genome information will grow exponentially in the years ahead

as genome analysis moves from the research lab to routine clin-

ical care for millions of patients around the world. If it were

possible to share and analyze this torrent of genomic information

together with associated clinical outcome data, it could signifi-

cantly accelerate the understanding and treatment of cancer.

The information would speed not only the identification of cancer

genes, but also the correlation of therapeutic responses to spe-

cific tumor genotype, including dramatic responses to new tar-

geted agents seen in some patients andmoremodest responses

to different regimens. In effect, it would connect cancer care

around the world into a laboratory for continuous improvement.

Making this world a reality will require coordinated efforts by

researchers, hospitals, and patient groups to accomplish two

goals: (1) creating the computational infrastructure to enable

sharing and (2) promoting a culture of sharing. It is easy to

imagine an alternative future in which cancer genomic informa-

tion cannot be aggregated because it is stored in inaccessible

sites and incompatible formats, much as is the case with elec-

tronic medical records in the U.S. To avoid this outcome, it will

be necessary to have common or interoperable standards for

data and analysis, cloud-based storage solutions to ensure

data security, and rigorous systems to enforce patients’ instruc-

tions concerning their data. But technology platforms alone will

not suffice. Clinicians, hospitals, and healthcare networks will

need to become engaged in collecting and sharing clinical

outcome data. Pharmaceutical companies and others will need

to share data from completed clinical trials. Ultimately, patient

advocacy groups may provide the impetus for cultural change,
as happened with AIDS. Though it must be up to each patient

to decide whether to share his or her data, we suspect that

most cancer patients will actively want to allow their information

to be appropriately aggregated and shared (with appropriate

rules and technology to protect privacy) to accelerate progress

for this and future generations of patients. We must ensure

that patients have the right and ability to contribute their informa-

tion to a global fight against cancer.
Conclusions
Genomics has become a powerful tool for cancer research,

yielding important biological surprises and enabling systematic

classification based on cellular mechanism. Cancer genomics

is just now emerging from its first phase, which has been largely

focused on creating basicmutational catalogs in primary tumors.

To fulfill its full promise, the field will need to deepen the struc-

tural characterization of cancer genomes, complement it with

comprehensive functional characterization of cancer cells, and

enable and promote information sharing across the world. Ulti-

mately, cancer genomics is about fully knowing the enemy.

While not alone a guarantee of victory, it is an essential part of

any overall plan of attack.
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